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Exact explicit relations connecting thermophysical characteristics of materials with results of measuring 

nonstationary values of primary parameters in heating of specimens by local heat sources with power varying 

arbitrarily in time are presented. 

In thermophysical experiments, heating of specimens of investigated materials by local heat sources of 

various configurations is employed extensively in practice [1-3 ]. It should be noted that calculational relations for 

thermophysical characteristics (TPC) are approximate in most cases and, moreover, are derived for specific laws 

of the time variation of the supplied heat fluxes. The current study, in developing the approach delineated in [4 ], 

presents a solution to the problem of determining a TPC complex using results of measuring nonstationary 

temperatures and heat fluxes in heating of specimens by surface local heat sources of variable power. 

As applied to a two-dimensional process of heat propagation in a material, we consider the mathematical 

model 
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which holds, for example, for heating of a half-space by surface local heat sources forming temperature fields 

symmetric about a vertical axis z (k = 1) or about a vertical plane x0z (k = 0). 

Using the Laplace transform with respect to the variable ~ and an integral transformation with respects to 

the coordinate r: 

1-k l+k 
T (p,  z ,  s ) =  p 2 r 2 Jk-1 (pr) T (r ,  z ,  s) dr ,  
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k-1  
where jk-1 is the Bessel function of order T '  we write the solution to problem (1)-(2") as follows: 
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l + k  1 - k  
p 2 r 2 Jk-1 (pr) q (p,  s) dp 

(3) T ( r , z ,  s ) =  -~ f 2 
0 (/92 + s/a)l/2 ' 

l+h 1-h 
where q(p, s) = p 2 .r 2 .Jk-1 (pr)q(r, s)dr, and q(r, s) is the heat flux from the source to the surface. 

0 2 
With reference to the sources concentrated on a circle of radius R 0 or distributed uniformly within a circle 

of radius RO, at r = 0 and z = 0 we have the following expressions for the temperature: 

, 2.TrR0 ~ exp - a R~ ' (4) 

Q (s) 
1 - e x p  - - -  a R0 T (0 ,  0 ,  s ) =  2 

~no ~ v~ 

(s) 

where Q(s) in the total power of a source. It should be pointed out that, for a source concentrated at a point, relation 

(4) is valid at the distance Ro from the source. 

For sources concentrated on an infinite line, at the distance Ro from the source we have 

and for a source distributed uniformly in a band of width 2Ro, at the source center we have 

r(o, o, s)= Ko V: ; no L_, V r ; R0 + 

(Q* is the source power per unit length; and Kv and Lv are the Macdonald and Struve functions, respectively). 

Using differentiation with respect to the parameter of the Laplace transform s, it is a simple matter to 

establish the following relationships, in the transform space, between the TPC and the primary parameters for the 

sources: 
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R0 

distributed within a circle of radius RO; 
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concentrated on a line; 

1 
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- 4 a  (s )  f ( s )  + ~ T (s)  (s)  , f (s )  = T' (s)  ( s )  - T (s )  ( s )  

distributed in a band. 
Utilizing wel l -known inversion theorems,  from the above relationships we may  readi ly  obtain the 

corresponding functional relations between the TPC and the primary parameters (T, Q) in the space of inverse 

transforms for the source: 
concentrated on a circle (or at a point): 
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The above dependences for the examined types of sources establish exact explicit functional relations 

between the TPC and the primary parameters (Q, 73 for arbitrary laws of the time variation of the source power 

and an arbitary duration of realization. It is noteworthy that, depending on the source type, the presented relations 

connect either one constant (thermal diffusivity) or a complex of constants a and 2cp with the primary parameters. 

In the first case, for identifying the entire complex of constants we may, apparently, use (having determined the 

parameter a) relations (4) and (6)-(8) with account for well-known inversion theorems. In the case of sources 

distributed within a circle, relation (13), with allowance for its invariance relative to realization duration and laws 

of time variation of the power, permits a determination of each of the parameters a and 2cp by calculating the 

functionals T1, T2, and Ta for various time intervals of a single test or for tests with different laws of time variation 

of the heating power. Evaluations of the sought parameters thus obtained will probably be dependent. 

Independent evaluations of the complex of sought parameters can be deduced using the measurement 

results for realizations with different dimensions of the sources. For example, for sources concentrated on circles 

of radii R 0 and 2R0, based on relation (4) we write 
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Ol.)( (')1 T 1 (s) -- 2 ~ R d  exp - d a R0 

/ T 2 (s) - 4rcR0~ exp - 2 d a R0 ' 

whence 

2 1 2 
' t r l  (s) Q2 (s) = ~ 7" 2 (s) Q1 (s) ,  

where T 1 and T 2 are the temperatures at the center of the heating zone in the realizations with sources concentrated 

on circles of radii Ro and 2Ro (or the temperatures at the distances Ro and 2Ro from a point source). In the space 

of inverse transforms, obviously, 

)~ = ~1 ('t'_____~) (16) 
~Z (~) 

1 r 0 
~1 (r) -- 7~R0 f Q1 (r -- 0) f Z 2 (0 -- 0) Ol (/9) d 0 d 0 ; 

o o 

�9 0 

i~2 (z') = f Q2 ('t" - 0) f 
o o 

T 1 (0-0) T I C 0) d0d0) . 

The  parameter  a can be found in this case from relation (12) using the measurement  data for one or another  

realization. Fur thermore ,  the parameter  a can be estimated based on the relationship 

T 2 (s) QI (s) - exp - -a R0 ' 

whence, after differentiation with respect to the parameter  s and conversion to the inverse transforms,  we have 

z ~11 0 )  (17) RO 

4 ~2 (r) 

where 

Ft (T) -1 /2  ~f o o ---- ~o 1 (r--O) f 792(O)(O-o)-l/2 d O d O ,  i01 (0)= f 
0 0 0 

T 1 (O-O)  Q 2 ( 9 ) d O ,  

T 0 

Tv20:) = f ( 2 0 - r ) ~ o  l ( r - 0 ) ~ o  2(0) d0 ,  ~o 2(0) = f 
0 0 

T 2 ( 0 -  0) Q1 (0) d 0 .  

In the case with measurement  data for realizations with sources distributed within circles of radii R0 and 

2R 0, based on Eq. (5) we may write 

[1 - v's ~ c p  T 1 (s)/ql (s)]2 = 1 - x/~ Vrffcp T 2 (s)/q2 ( s ) ,  

where T 1 and ql pertain to the realization with source radius R0; T2 and q2, to the realization with source radius 

2R0; ql (s) = Q1 (s) / 0rR~); and q2 (s) = Q2(s) ] (4JrR2.). 

In turn, in the space of inverse transforms we obtain 
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0 
i~2 (Z) = f T t (~" -- 0) f 
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T 1 (19) q'2 (0 -- 19) d ~ d 0 ,  
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o o 
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To determine the parameter a in this case, we can turn to relationship (13) or employ the relation 

T 2 (S) ql (S) 

rl  (s) q2 (s) 

whence 

i i 

[T 2 ( s )  ql (s ) ]  [ r  1 (s) q 2 ( s ) ] -  [T2(S) ql (s)]  [T1 (s) q2(s )  l = 

2 
R0 [T~I (s) q2 (s) - T 1 (s) q2 (s) T 2 (s) ql ( s ) ]  

2 v ~  

which, in the space of inverse transforms, corresponds to 

a - 
2 ~-2 

R 0 ~01 ('t') 
4 ~-2 

~2 (r) 

(19) 

where 

~f h (~ _ o) 
0 

0 
f 
0 

(o -19) -1~ tcz (19) - / i  O) l d19 d O ; 

T 

72 (0 = f 
0 

(20 - 3) /1 (3 - o) h (o) ao ; 

0 0 
f l  (0) = f ql (19) T 2 (0 - 19) d 19, -1'2 (0) = f 

0 0 
q2 (o) r~ (o - o) d O. 

The procedure for constructing the above explicit relations for the TPC involves no difficulties owing to a 

fairly simple representation, in the space of transforms, of the corresponding solutions of the heat conduction 

problem for definite spatial positions of the points of temperature measurement. By contrast, with an arbitrary 

disposition of the measurement points on the surface (for example, with heating by a source distributed within a 

circle), the solution, being an improper integral, is not expressed in terms of some special functions, with account 

for whose properties it would be possible to construct relatively simple differential relations of the type (9) in the 

space of transforms. 
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If we consider  a situation where, in one realization with the source dimension R1, temperatures  are 
measured at the distance R 2 from the source center and, in another with the source dimension R2, measurements  

are made at the distance R1 from the source center, then, based on the relationships 

R1 .~ J0 (PR2) arl (PR1) dp --- 7"1 (s)  
TR1 (R 2 , s)/qR1 (S) = ~ 0 (p2 + S/cl)l/2 

R2 .~ J0 (PR1) J2 (PR2) 
TR2 (R 1 , s)/qR2 (s) = --2-- 0 (p2 + s/a)l/2 dp =- 7"2 (s) ,  

where TR1 (R2, s) and qR1 (s) refer to the realization with the source dimension R 1 with the temperature measure- 

ment at the point R2, and TR2(R 1, s) and qR2(S) pertain to the realization with the source dimension R2 with the 
temperature measurement  at the point R1, it can be shown that it is possible to construct a relatively simple 

functional relationship between the parameters a and 2cp and the primary parameters TR1, TR2, qR1, and qR2. 
Indeed, using differentiation with respect to the parameter of the Laplace transform s and a series of identity 

transformations, we write for 7'1 (s) 

2 2 2 
' ' 1 ' R1 + R2 RI 

[ST' 1 (S)] + )-7'1 (S) -- 4a 7"1 (S) + ~ a  7'2 (S) -- 

2 
R 1 V~ R1R2 ~ '/'1 (P___RI___)J1 (PR2) dp 
42a x/-s 2;ta 0 I,rp 2 - s / a  xl/2) ' 

(20) 

and for 7'2(s) 

2 2 R 2 
' 1 ' R1 + R2 + ~ 2  

[sT" 2 (s) ] + -~ 7'2 (s) - 4a 7'2 (s) 2a 7"1 (s) - 

2 
R2 vr-a R1R2 ~ J1 (PR1) J1 (PR2) 

42a d-~ 22a 0 (p2 + s /a) l /z  
dp. 

(21) 

From Eq. (20) and Eq. (21) it follows that: 

{ 1 ) 
[$7"1 (S)] + ~ 7 ' 1  (S) -- , [ST" 2(s ) ] '  + ~7 '2(S)  = 

[ 

2 2 2 2 2 2 
R 1 + R  2 R1 R2 R1 - R  2vrd 

- 4 ~  [7"1 (s) - 7"2 (s)] + 2-a 7'2 (s) - -~a 7"1 (s) 42a x/~ 

or 

4a {- s 
2 - -  2 

R 1 - R 2 

3 �9 + -~ q (AT* 

t r i t ~ 

[(AT* q* * q * -  q * -  - q AT*) '  2q* (AT* AT* q*) l  + 

, } .2 -1/2 .3 
q* -- AT*q*)  = (T 1 + T2) q - s q 

AT* = T 1 - T 2 , (22) 
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Fig. 1. Initial data for computation and results of evaluating the parameters 

a and 2cp for specimen heating by a heat source distributed uniformly within 

a circle of radius 0.005 m: AT and qi are the surface temperature of the 

specimen at the source center and the density of the heat flux from the source 

in the first realization; AT 2 and q2 are the same, in the second realization; 

1, 4) parameters a and 2cp calculated from AT and q of  the first realization; 

2, 5) the same, calculated from AT and q of the second realization; 3, 6) a 
and 2cp calculated from the two realizations. AT, K; q, kW. m-2; a, m 2" sec -1; 
2cp, kW-kJ.m-4.K-2; 7, sec. 

where in the case of different laws of time variation of ql and q2: q*(s) = qRl(S)qR2(S), T~l(s) = TRI(R 2, s)qR2(S ), 
T~2(s) = TR2(R1, s)qnl(s) with  iden t i ca l  laws of t ime v a r i a t i o n  of ql and  q2: q*(s) = qRl(S) = qRl(S), 
T~l(S ) = TRI(R2, s), 7~2 = TR2(RI, s). In the space of inverse transforms we thus have the following functional 

relationship: 

4 a  ~__ 

2 R1 _ R22 ipl (T) ~2 (r) (2cP) -1/2 ~3 (Q (23) 

where 

~I ('t-) = d~l '~ ('t-) 
dz + ~1,1 (r) ,  ~1,o (r = f (30 - r) q* (0) f (T -- O) dO ; 

0 

3j.q. r&,~ (~) = ~ (o) / (~ - o) dO; 
o 

0 
/(o7 = f (2o - o7 q* (07 AT* (0 - ,97 d 0;  

o 

r 0 
i~2(T)= f q* (r -- 0) [T; (O) + T; (O) ] dO ; q '*(O)= f q*(O) q * ( O - ~ ) d O ;  

0 0 

0 
~a (r) = ~ -  ~ f ~'* (~ - 0) f (0 - o ) -  1/2 q. (o) d O d 0.  

0 o 

Based on the relations obtained we developed algorithms for computer calculation of heat transfer constants 

for various versions of the thermophysical experiment. The algorithms devised were checked by a numerical 

experiment, where the results of solving the corresponding direct problems of nonsteady heat conduction were taken 
to he the initial data. 
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Fig. 2. Initial data for computation and results of evaluating the  parameters 

a and ~ for specimen heating by local heat sources concentrated on circles of 

radii  0.005 and 0.001 m: Q1 and  AT1 are the source power and the 

temperature at the center of the heating zone in the realization with a 0.005- 

m source radius; Q2 and AT 2 are the same, in the realization with a 0.01-m 

source radius; 1, 2) evaluations of the parameters a and  2. Q, W; ;t, 
W.m -1 .k -1. 

Figure 1 gives results of evaluating the parameters a and ~.cp as applied to the version of specimen heating 

by a local heat source distributed uniformly within a circle of radius 0.005 m, where the following TPC of the 
material were adopted: a = 1 �9 10-s rex- sec-1; 2cp = 129.6 kW.kJ �9 m-4. K-2; 2 = 0.036 kW �9 m -1 �9 K -t. The evaluations 

of the parameters a and 2cp, presented in Fig. 1, relate to the case of the "measurement" data for T and q in one 

realization or in two realizations with different heating conditions. It is clear from the results given in Fig. 1 that 

the computed values of a and ~cp converge rather rapidly to their exact values with lengthening of the realization 

time intervals used for processing. 

Figure 2 gives results of evaluating the parameters a and 2 using the collection of "measurement" data for 

T and Q in realizations with sources concentrated on circles of radii 0.005 and 0.01 m. Thermophysical charac- 

teristics of the material are taken the same as in the above case. The results of checking the numerical algorithms 

devised indicate the possibility of effective reconstruction of TPC with the use of the approach proposed. 

Similar results also occur for other types of the sources considered in the present work. 

Thus, based on the analysis performed it can be concluded that the obtained exact explicit relations 

connecting TPC of specimens with measurement results for the primary parameters with power of various local heat 

sources varying arbitrarily in time can be used as a basis for practical methods of identifying TPC of materials. 

N O T A T I O N  

T, temperature; Q, power of the heat source; q, heat flux; r, z, spatialcoordinates; z-, O, O, time; a, thermal 

diffusivity; ~, thermal conductivity; c, specific heat; p, density. 
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